GraphEngineDev
Introduction

The GraphEngine is a generic chart rendering library. The primary use will be to generate charts for
TikiSheet, but usage could be extended to other features in Tiki and other projects. The library should be
working and integrated to TikiSheet by the 1.9 release. This page indicates the development status,
decisions and various specification rules. It's written for those using the GraphEngine library (not the user
interfaces that will use it) or extending it.

Integration made in time for 1.9! Enable feature charts.

The library aims to be output independant. At the moment, multiple renderers are available:

¢ GD (PNG, JPEG)
e PDF (Using PDFLib)
e PostScript (Using PSLib, in PECL)

Other renderers such as SVG and PDF using other libraries can be added without any major changes.
Those renderers are planned in a post-1.9 future. To ensure the independance of the renderers, all
renderers must extent the GRenderer class and follow the base guidelines and follow the expected
behaviors.

GRenderer Specifications

e General Rules
o Renderer clients only rely on the base interface defined by GRenderer.
o Methods starting with an underscore are used internally and are not part of the interface.
o Lengths and positions are given as float values between 0 and 1. The values are proportions of
the width or height.
o Output parameters are given using the style parameters.
o Coordinates begin from the top-left corner as (0,0)
e Style parameters
o Renderer-specific.
o Clients should not make any assumptions concerning the structure.
o Implementers choose the structure and can modify it at any time (as long as everything still
works).
o Are created by the getStyle($name) method. The names are common to all renderers.
Implementers are responsible of making sure the styles returned behave properly.
e Text
o Location is based on left, right and height.
o Height is the top of the string.
o In the case of vertical text: height becomes left, left becomes bottom and right becomes top.
o Alignment and orientation is handled by styles.
o getTextWidth() and getTextHeight() return values between 0 and 1 to make sure the clients can
perform appropriate calculations.
e Shapes
o Lines use the LineStroke styles.
o Rectangles can use the LineStroke and FillStroke styles.
o Pies can use the LineStroke and FillStroke styles.
o Angles in pies start at 0 RAD, (1,0), or whatever you call that location at the right of the circle.
o Angles are counter-clockwise.
o Angles are given in degrees.
o Radius is a length and will be transformed against the smallest of available width or height.
(consider a landscape sheet of paper, height would be used)

The getRawColor() function recieves a color name as the parameter and returns an array containing the
color codes as RGB. The color names are all lower case and the returned array contains three values
associated to 'r', 'g' and 'b'. The values are 0-255. Available colors are:

e red

e green

e blue

e yellow

e orange

e lightgreen
e lightblue
* gray

e black

e white

Graphics
Feeding Data

Data is feed using series: single dimension arrays (keys will be ignored). Each graphic has to identify
which series it uses. When called, setData() will verify if all required series are present and make sure
they are valid. The series list is taken from getRequiredSeries(), which returns an associative array with
the series name as the key and a boolean value to indicate if's mandatory. A non-mandatory series means
the graphic will come up with replacement values.

setData() recieves an associative array as the only parameter. The key is the name of the series and the
value is an array containing the values. If the data is valid, handleData() will be called so the graphic can
handle the values and build proper internal structures.

Some graphics might require unlimited amounts of series, such as a line graphic having n amount of lines.
It's recommanded to create a single entry in getRequiredSeries() called 'y0'. setData() will make sure all
the series listed are present, but will accept non-listed series as long as they are valid arrays. Examples of
this will be created soon.

Currently Available Graphics

e PieChartGraphic
e MultilineGraphic
e BarStackGraphic
e MultibarGraphic

More can be added, name it.

Parameters

The output of graphics can be customized using parameters. All parameters have default values that can
be overloaded. The setParam() method allows to do this operation.

About Fake GRenderer

The Fake GRenderer class is a decorator class over any kind of renderer. It allows to create a renderer
over a portion of the other renderer. The fake renderer is used internally to force methods to draw in
specific portions of the graphic without sending 4 position parameters.

For example, the drawContent() abstract method recieves a renderer as the first argument. The draw()
method initialize in Fake GRenderer to the content area of the graphic after determining the size when
title and legend have been positionned. This way, the child classes are totally independant and render
their content in a 0 to 1 area, no matter what the real position is.

The renderer could be used by clients to fit multiple different graphics in a same canevas without having
to modify any of the graphics being rendered.

The fake renderer forwards the method calls to the real renderer after scaling the positions and adding
the offsets. All components are scaled down except the text. Since in all graphic libraries used the fonts
have a static size, the size of the font cannot be scaled down. To keep consistency, opposite operations are

applied in the calls to getTextWidth() and getTextHeight(). (You dont have to understand this, it magically
works)

Style List
TODO

Layout Parameters
TODO

	GraphEngineDev
	Introduction
	GRenderer Speciﬁcations
	Graphics
	Feeding Data
	Currently Available Graphics
	Parameters

	About Fake_GRenderer
	Style List
	Layout Parameters

