
PermissionWrapperFunction_gmuslera
Since I originally wrote this (the last part of this page) I learned a bit more on how actual implementation of
permission system is done. My knowledge is still superficial, but could serve as a revision of my original
proposal (that I still include here as it could become valid).

There are a lot of things written about permissions. In PermissionDev there are an explanation for developers
plus some discussion about actual problems and how it can evolve. In PermissionAdmin is showed a bit how the
scheme works from the user/admin point of view, and as a background I think both gives a good rounded idea
on how it works since those both points of view. What I want to do here is not do a big change in the current
scheme, but a smaller one that fixes some problems and maybe puts some things in a more clear way.

Layers
There are 2 or 3 layers when a permission is evaluated. You must evaluate "system" level permissions (i.e. that
the feature is enabled), user level permissions (what the groups on where the user belongs can and can't do)
and object level permissions (what that object say that can be done with it).

The "system" layer is a bit independant of the other two, if a feature is disabled there is no way (even for
admin) to enter there, even if groups have some permissions on the content of those features, and that is a
good thing, i.e. one can disable for a time a feature and the permissions for all groups will be the same when it
become available again.

The user level and object level permissions are a bit more connected. Unless you are an admin, and have all
permissions granted, if the object have permissions assigned are this the valid ones, else the user groups
permissions are what are used. At this point, things are a bit more debatable, i think that the object permission
could override the user permission if the object have the same permission assigned, not just any permission
(i.e. if user A can view wiki and wiki page B enabled modification for a group where A don't belong, then A still
can see B but not modify it)

About categories I'm unsure on how things are really implemented and used right now, but think that the rigth
thing would be return as object permissions the ones it have combined with the ones of its categories, but
seems to be complex.

Using permissions
There are two points where permission related functions are used: in programs and in templates.

In programs or are evaluated user permissions checking against global variables configured with tiki-setup for
the current user, or go a bit deeper checking object permsissions, calling functions, normally filling all
permissions related to the current object for the smarty template that will be called after.

The templates, on the other hand, can't call userslib functions (library where all the user and object permission
related functions are stored), just check against variables initialized by the calling program.

Actual problems
Sometimes the actual implementation of several sections of tiki do first a generic global permission check
(i.e. if $tiki_p_view) before checking object specific permissions.
Is complex to evaluate permissions for object/user different to current ones

My experience around those problems
I'm not worked in a lot of things in tikiwiki, but i touched 2 things that are related to this problems, a tentative
replacement for the application menu and the include plugin, using different approachs in both.

The "normal" application menu have hardcoded the permissions, and all were global variables for the current
user. Instead ov evaluating permissions in the template, what i did was doing the evaluation on the calling
program, and passing arrays to the template where are no more explicitelly used, but maybe things that
modifies template rendering, like saying that this should not have link, or things like that.

In the include plugin, i have to check if the current user can see the content of a wiki page that were not the
current one. Here proved to be very useful some functions on userslib:

object_has_permission say if some object have some kind of permission attached. I used it as it follows
the current criteria that says that if the object have any kind of permission, then the objects permissions
are the ones that are valid and not the user/group ones, but if my previous suggestion of modification is
accepted, maybe here could be more useful a function that say that an object that an specifically named
permission attached
object_has_permission, that says if that object, for the groups where the user belongs to, have that
permission
user_has_permission, that checks if the user (without worrying about object permission) have a particular
permission enabled. I'm not entirely sure if I needed to call this particular functions as I was evaluating for
the current user, this permission should have been well initialized.

All I wanted to know if the user has the permission tiki_p_view for the to be included wiki page, and this scheme
can be used in more sections of tiki where the permissions for a user or an object that is not necessary the
current one should be evaluated

Recomendations
Modify a bit the semantic of permissions, making object permissions override user permissions just when
the same permission name is used for that object
Spread a bit the permission checking functions, having i.e. a sister function of object_has_permission that
combines the object permission with the user global permissions to give the "right" answer instead on one
focused on object point of view. Or functions that retrieves just with a few sql queries all permissions
related to an object and/or user, instead of looping at an upper level (and then doing more queries than
necessary) for each permission. Maybe what is really needed is some kind of higher abstraction level
functions to simplify development of modules (see the original text of this page)
Normalize permission names, as most programs that need to collect all permission related to a kind of
object need to do the exact test for all and each one of those permissions
Normalize object type names. Some of this functions need to identify an object i.e. wiki page, not just the

page, but also the literal 'wiki page'. Some kind of "dictionary" that mix object kind names with available
permissions could prove helpful.
Put permission related functions in another library, not in the userslib.

Original text
[+]

	PermissionWrapperFunction_gmuslera
	Layers
	Using permissions
	Actual problems
	My experience around those problems
	Recomendations
	Original text

