
RFEs
WikiWords generation for non-anglophone characters
Cut language.php's size for lowering memory usage, see botttom of page for more.

Competition and standards
List of other products with similar/interesting/related features.

Here I would like to see some "editorial" content. How do our features compare to others?

CVS Doc section
This is where new features being developed and only in CVS are documented. When the CVS becomes
RC/official release, the info in the CVS docs is transferred to update the official docs (FeatureXDoc).

Discussion/participation

language.php's memory usage
mose said :the language.php is so heavy that it's one reason we need huge amount of memory for tiki.
(sylvie: 228KB is it really bigcompared to the 5MB - but optimization is everywhere) Maybe that file
cane be regenerated by admin with only the selected options translated, to a language_light.php. That
would imply to declare somewhere the list of tpl for each feature, but imho it's not so a huge work when
that first step is done.

Chealer9 adds :
I was not aware of this issue. Here's an idea this gave me. I'm highly unsure about it and would like
your comments. I am Not proposing myself for this, it's just a brain game.
Well, I had more ideas since, I'll write it in steps so it's easier to follow.

Replacing english strings in tpls with numbers used to specify which line in language.php1.
corresponds with translation. This slightly cuts tpls's size but reduces language.phps' size by half
(for memory). This must be nearly as long as writing a new core though, and it means that strings
changes or additions would take long.
Adding both a line number and the english equivalent makes tpls nearly as easy to read as before.2.
But it's still long to change translations, so instead we can proceed just as we do now and add the
line number periodically running a script similar to get-strings.
Actually, the english corrections can be made directly in template. It can be done either by3.
periodically running a script to watch if all the strings inside {tr}s still match their associated
number and if not updating the english language.php. It would probably be more efficient to rely on
something watching CVS commits to run the script on the file immediately.

Here are associated advantages :

I guess we could make spotting the context (discussed higher in trackers) pretty easy keeping the
string number unique even for identical strings.
Actually this can push mose's idea of language_light to its limit since Smarty could first find all line
numbers it has to translate and then only read those. I think it also saves the admin to compile files
ans us to associate each file with a feature. This would mean a nearly inexistant memory usage of
translation
We could currently save about 1.5 MB from the uncompressed Tiki size removing the english
strings. I guess this would make fixing the english in tpls less annoying for translators too.
I don't know much about the email notifications' linguistic problem, but I guess the change would
make it much easier to solve.

http://sourceforge.net/tracker/index.php?func=detail&aid=807177&group_id=64258&atid=506849

Assuming someone codes this it would leave three problems :

Development is a bit complicated. That's yet another thing you have to understand.
Also those two spam issues

line numbers in tpls
for each CVS commit changing tpl strings, a bot would commit another version with line
numbers.

I realize this is not really a Tiki only thing, maybe others already have something like that...Smarty? At
least, if not then coding it could probably be contributed to Smarty. Also, I totally forgot about PHP's
tra() while writing this and I just hope it can still work with that. This can really contain errors, feel free
to correct me.

Update : I attached a discussion I had at #smarty with other devs. One talked about gettext, I wonder if
we can use it optionally. It was supposed to be useful for all those advantages except context.

Update 2 : Sylvie came with a link to Smarty gettext today on IRC without much feedback, but it
sounds good

Update3 : sylvie: In 1.9 I took away a couple of include(language.php). Now (I think) the include is
done only when it is really necessary. If the tpl files are precompiled, the include(language.php) is only
done by the tra calls.
=> to optimize the perf:

transform tra into tr: can be done in some cases
include a language_tra.php in the tra function that includes only the tra strings (around 700 strings
on a total of 4100) - that can be interesting for memory also
develop a more efficient access to the strings (that is what gettext is doing)

The creation of the language_tra.php can be done when you compile all the tpls.

Remove bloat from language.php

http://smarty.incutio.com/?page=SmartyGettext

Observation
As we see on i18n status, many translations are incomplete. I have in mind two patches submitted to
SourceForge, one proposing Ukrainian with 30% completion, the other proposing Korean with 10%
completion. I hesitate to include those, since Tiki's default lang folder already eats about 4 MB, and
those languages are not even complete.

Proposed improvement
Why not add something to the release script that would remove untouched strings from (incomplete)
language.php-s? The package's size would be reduced, but also the memory consumption of those
languages. This sounds quite easy to code, and it would make include partial translations much more
reasonable to consider.

Chealer9

What about the question that Isam Bayazidi posed about RTL languages, ones that are read right-to-left,
and the benefit of right justification? He wanted a bi-lingual site, i.e. Arabic and English. —
UserPagejcwinnie 2004-May-17 -

a partial solution in i18n status right to left langauge paragraph - sylvie

tr tokens proposal
The following mechanism (or something very similar) is used in most popular operating systems - it
could be added to Tiki with minimal impact on the Tiki environment.

https://tiki.org/i18n-status
http://wiki.jolug.org/tiki-index_raw.php?page=UserPageisam
https://tiki.org/UserPageJcwinnie
https://tiki.org/i18n-status

Syntax

{tr token=$token}default text{/tr}

Either token or default text must be supplied. Supplying both is acceptable.

New message string format:

 ::= { }*
 ::= |
 ::= any character > code 31 (' ') except ',', ')', ':', '?' or '/'
 ::= '?' (matches any character)
 ::= { | '{$variable}' | '{{' }*

Spaces may only appear in

Alternative tokens
Alternative tokens are seperated by '/'.

Wildcards
The '?' character in a token in the file matches any character in the same position in the token supplied
to be matched.

Case significance
Case is significant.

Unmatchable tokens
The actions to find a match for a token are:

search the appropriate language file using token as the key1.
search the appropriate language file using default text (if supplied) as the key2.
use the default text (if supplied) as the translated text3.
generate a error4.

Note: there is no attempt to check the default language file. It is expected that the default text will
always be supplied

Namespaces
Initially the extended features of tr would only be used for text labels and button text. The token always
begins with:

token description

button. for button text

label. for label text

Examples: button.edit label.user_flip_modules

Supplying a default string
Whenever you use {tr you can supply a default string to be used if Smarty cannot match the token. The
syntax is:

{tr token="label.user_flip_modules"}Users can Shade Modules:{/tr}

Message token {$token} not found for language {$lang}

get_strings.php
get_strings.php would need to be extended to understand the new syntax and do the right thing.

is there a better way to represnet the messages file as an associative array, while keeping the
flexibility of many:1 tokens:strings relationships
how do we make this work with database-driven translations?

I don't like at all the notion of token. Thinking that with token you can change English translation
without reviewing the other translations is wrong. If the English changes, the others have to
change. I don't think about typo fixes, and sed is easy to do, a php can be also very easy to do (if the
language file are writteable) sylvie

I understand your point, but I disagree. Firstly, if a button is renamed from 'remove' to 'delete'
there is no need to update the language translations. Secondly you won't catch the changed
syntax if a developer makes the button labelled 'remove' no longer delete, but instead archive
an artifact (but doesn't update the button label). Aside would it be spotted if a developer
changed a button text and updated all the language files at the same time (to use the same
translation with the new string?). — mdavey

perhaps tokens should only be used in limited circumstances, to add context to short strings
such as button labels? mdavey

The major I see now is:

- to be able to specify the context af a translation.
The other I had in the chart feature "perm" that is not perms but the abbreviation of "permancency"
- to optimize the access to the tra strings sylvie

So I propose

{tr context=xxxx}string{/tr}
the context will be added by each translator each time he has some problem. For an abbreviation it will
be the complete string. For a table header, it will be the indication "header".
get_strings will have to create the lines
//"context#string" => "translatedstring"
The translator can uncomment the line and adds his translation if needed sylvie

Errors

https://tiki.org/sylvie
https://tiki.org/sylvie
https://tiki.org/sylvie

For the optimisation I propose to compile the remaining strings in a (md5, translatedstring) to speed
the process. sylvie
^

See also
i18n Team
doc:Internationalization
MultilingualStep2 and all other pages in this category

IrcHook

https://tiki.org/sylvie
https://tiki.org/i18n-Team
https://doc.tiki.org/Internationalization
https://tiki.org/tiki-editpage.php?page=MultilingualStep2

	RFEs
	language.php's memory usage
	Remove bloat from language.php
	Observation
	Proposed improvement
	tr tokens proposal
	Syntax
	New message string format:
	Unmatchable tokens
	get_strings.php

