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VÃdeo
Marc Laporte, um administrador de longa data do Tiki e membro do conselho da AssociaÃ§Ã£o de Software da Comunidade Tiki
Ã© entrevistado pela the 146th FLOSS Weekly netcast, com Randal Schwartz e Simon Phipps, atual Presidente da Iniciativa de

CÃ³digo Aberto [Open Source Initiative (OSI)]

#If_you_let_everyone_contribute_it_ll_be_chaos._How_can_it_possibly_work_
http://www.youtube.com/watch?v=Q8tjaz6CO3Q#t=8m37s


Model



Wiki community
It's a Do-ocracry. Everyone is a volunteer. Things get done because someone like you decides to take the time to make it better.

Join a team!

Participate in a TikiFest!

https://tiki.org/tiki-index_raw.php?page=team
https://tiki.org/tiki-index_raw.php?page=TikiFest


Wiki way participation to theÂ code
While many open source communities have a send-a-patch-and-someone-else-will-commit approach*

, in Tiki, we encourage everyone to commit directly to the source code.

List of all code contributors (out of 500+ which have access)
dev:How to get commit access (as easy as it gets!)

https://tiki.org/tiki-index_raw.php?page=List+of+all+code+contributors
http://info.tiki.org/article188-Tiki-reaches-500-contributors-with-commit-access
https://tiki.org/tiki-index_raw.php?page=dev%3AHow+to+get+commit+access


Scheduled releases
Scheduled releases are a fundamental part of the Tiki model. As a large community, it makes it clear for everyone what to

expect.

There are two major releases per year (October and April), with several minor releases in between. Please see: dev:Roadmap and
info:Version lifecycle and When to release - think popcorn

Whatever is not ready in time for a release is pushed back to the next. If you are late for a train, you may miss it, but you'll be
early for the next one 

Why every 6 months? Why not 4? 8 or 12?

4 was too short. 12 was too long.

6-8 months was just about right. It's long enough to make big changes, yet it's short enough that you don't have to wait forever.
For people in a business setting, it's essential for them to be able to a commit to a date with their customer. By having a set date,
there is an incentive to commit to trunk, and know when it will become stable. 6 months has the benefit that we can choose good
months to release (October and April) that are the same every year. In the future, it may become even faster (3-4 months), but it

will certainly not become longer than 6 months. People who need a slower cycle can use dev:LTS.

How can we know there will be enough new features to justify a major release?

During a 6 month period, there are several thousand commits, which is more than enough to justify a major release. Just check
doc:Tiki2, doc:Tiki3, doc:Tiki4, doc:Tiki5, doc:Tiki6, doc:Tiki7, doc:Tiki8, doc:Tiki9, doc:Tiki10, doc:Tiki11, doc:Tiki12, doc:Tiki13

and dev:RoadMap

https://tiki.org/tiki-index_raw.php?page=dev%3ARoadmap
https://tiki.org/tiki-index_raw.php?page=info%3AVersion+lifecycle
https://tiki.org/tiki-index_raw.php?page=When+to+release+-+think+popcorn
https://tiki.org/tiki-index_raw.php?page=dev%3ALTS
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki2
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki3
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki4
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki5
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki6
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki7
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki8
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki9
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki10
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki11
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki12
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki13
https://tiki.org/tiki-index_raw.php?page=dev%3ARoadMap


All-in-one codebase
All functionality is in the core. Developers are collaborating throughout the whole codebase (Over 1 million lines of code) vs

third-party module developers cooperating, or coordinating around a common "core." As far as we know, Tiki is the Open Source
Web Application with the most built-in doc:features. Read more about cooperation vs collaboration.

https://tiki.org/tiki-index_raw.php?page=doc%3Afeatures
http://eaves.ca/2007/02/05/wikis-and-open-source-collaborative-or-cooperative/


Inherent synchronizedÂ releases
Releases take more planning and coordination because all the features are released at once, but since it's de facto Synchronized
Releases, the whole community can collaborate right away on the next release and this permits rapid major releases (even with

such a vast code base). See info:lifecycle.

Compare Tiki's all-in-one model makes it resistant to the typical issues faced by other applications, as explained
by CMSWire...

Yes, Drupal 7 is officially available for download. But it's important to recognize that this is just the Drupal 7 core â€”
the release status obviously does not apply to the thousands of modules (add-ons) contributed by the community.
Although there has been much support from the community that supplies contributed modules, and an entire
movement that pledged to have their modules D7 ready by release time, it hasn't exactly happened.
â€” CMS Wire (Jan. 5, 2011)

http://thecoccinella.org/synchronized-releases
http://thecoccinella.org/synchronized-releases
https://tiki.org/tiki-index_raw.php?page=info%3Alifecycle
http://www.cmswire.com/cms/web-cms/drupal-7-released-but-is-it-production-ready-009722.php


Lots of features, but noÂ duplication
Tiki is a "1-stop shop" with tons of features. In fact, Tiki is the FLOSS Web Application with the most built-in features. However,

there is but one forum, one blog, etc. Having duplicate features would lead to all kinds of problems and would splinter our user &
developer base. If several people want to improve a feature, they collaborate and extend, in the wiki spirit. This is why we can

give highly descriptive names like Tiki blog, Tiki forum, etc  All features are optional.

On Wikipedia, when two pages are about the same topics, they are merged:
http://en.wikipedia.org/wiki/Wikipedia:Merging

In Tiki, it's the same idea but for features.

https://tiki.org/tiki-index_raw.php?page=FLOSS+Web+Application+with+the+most+built-in+features
http://en.wikipedia.org/wiki/Wikipedia:Merging


Dogfood
We eat our our own Dogfood and we hope you will as well  All *.tiki.org sites are powered by unmodified versions of Tiki. And

new versions of Tiki power the sites before the official versions are released.

https://tiki.org/tiki-index_raw.php?page=Dogfood


FAQ



Decision-making & Governance



Decisions
Tiki is a do-ocracry. Join a team!

Ok, but who decides?

The vast majority of decisions go to the ones actually doing the work (be it code, translations, documentation, etc). There is a
very strong collaboration culture in Tiki. So contributors discuss and find better ways to do things. You may have the impression

that this is a big and complicated thing, but it's not. The vast vast majority of things to decide, everyone agrees. (it's easy to
agree on the ideal; the real challenge is deciding on what you can do with limited resources, but since it's a do-ocracy, this solves

itself.)

No offense but sounds like a "hippie mumbo jumbo". If the shit hits the fan, who decides?

The project admins as listed on WhoWhat. For example, they act as a safe guard, as a last resort to deal with Difficult People.

Ok, but what if these people make a really bad decision?

Anyone can take the source code and start a fork

Ok, ok, but what are the general priorities of the community?

Please see SWOT.

https://tiki.org/tiki-index_raw.php?page=team
https://tiki.org/tiki-index_raw.php?page=WhoWhat
https://tiki.org/tiki-index_raw.php?page=Difficult+People
http://en.wikipedia.org/wiki/Fork_%28software_development%29
https://tiki.org/tiki-index_raw.php?page=SWOT


Is it backed by a big business?

While many Tiki developers run consultancy businesses around Tiki, yes, decisions are made in the best interest of the
community, not of one or many businesses. For example, a business wants to find a way to lock you in.

http://en.wikipedia.org/wiki/Lock-in Some could be tempted to make hosting more tricky so they can promote their own hosting
offer. We want Tiki to be as easy as possible to install, via Fantastico panels for example. We are not just some geeks who are

running Tiki on dedicated servers as root. We do care about the little guy on a budget shared hosting account.

Is there anÂ association?
Tiki is Community managed and open development with an official Tiki Software Community Association.

http://en.wikipedia.org/wiki/Lock-in
https://tiki.org/tiki-index_raw.php?page=Tiki+Software+Community+Association


What is the businessÂ model?
Tiki as a project, has modest expenses, which are covered by donations. It doesn't need a "business model" like a company that

has expenses or employees to pay. While info:consultants are available for hire, Tiki is "Community Open Source" and not
"Commercial open source". If you would like to hire or offer Tiki services, please see business models.

https://tiki.org/tiki-index_raw.php?page=donations
https://tiki.org/tiki-index_raw.php?page=info%3Aconsultants
http://dirkriehle.com/publications/2009/the-commercial-open-source-business-model/#section3
http://dirkriehle.com/publications/2009/the-commercial-open-source-business-model/#section3
https://tiki.org/tiki-index_raw.php?page=business+models


Is itÂ sustainable?
Absolutely! Various Tiki contributors can come and go. But, Tiki, as a project & community will continue no matter what. No one
can lock down the code and require people to pay for it. Tiki evolution & development is in no way, shape or fashion the result of

VC funding.

http://en.wikipedia.org/wiki/Venture_capital


Who contributes toÂ Tiki?
Users, just like you!

Typically,

info:Consultants, which offer Tiki services1.
IT departments in organizations2.
Volunteers which are using for personal projects3.

https://tiki.org/tiki-index_raw.php?page=info%3AConsultants


License
Tiki is LGPL 2.1

Ok, but is it really free? I want to develop websites and I don't want my customers to know I am using Tiki.

Some systems have restrictions on removing promo link or logo. Some software is GPL but they ask money to remove the
Copyright messages. With Tiki, you can do whatever you want. There is no commercial license. Since it's LGPL, you can include in

commercial apps, sell, etc. Of course, we hope that you will want to contribute code, documentation, bug fixes, bug reports,
feature requests, translations, or even money, etc. and/or hire some of the consultants, but you are not required to do so.

Will it always be free?

Yes, because Tiki is a community project.

http://phpnuke.org/modules.php?name=Commercial_License
http://phpnuke.org/modules.php?name=Commercial_License
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://info.tiki.org/Consultants


Core & moduleÂ developers
In CMS {add your CMS name here}, there is the core and there are 3rd party modules. There are core developers and

modules developers.

In Tiki, that distinction doesn't exist. Or if you wish, all developers are core developers. We have a mods system to share
code without being in the official release. However, this is the exception rather than the rule. Pretty much the opposite to many

other systems...

http://mods.tiki.org/


Why don't you fix/improve the existing
features instead of adding newÂ ones?

This is a common concern/frustration of users. Especially when struggling with a bug.

Who would decide the priorities? Person A may think the priority is to improve feature X, but for person B, feature X is good
enough, and adding Feature Y is more important. Of course, each person will tend to think their thing is the most important.

Tiki is a do-ocracy. Tiki is a diverse community. While many people have Tiki as their main livelihood, they don't work for Tiki.
They work for various entities that use, love, (sometimes hate!), depend on, contribute to and want to see improve a project. But
each has their own priorities. This diversity is part of the strength of the project. The answer is that different people that work on

different things. The dev:WishList has that name because it's things that people wish for. These can be bug fixes, feature
requests, etc. The line between a bug fix and a feature request is often muddled.

Even if we somehow did stop people from adding new features (imagine the discussions!), would they really re-allocate their
energy to fixing bugs? Since they may need a specific feature for a project, so if they are not allowed to contribute, perhaps they

would use another CMS/Framework or they would do it anyway but not contribute. None of which is in Tiki's interest.

Now, to avoid regressions in the stable branch (3.1 -> 3.2), some developers have volunteered to form the dev:Quality Team.

https://tiki.org/tiki-index_raw.php?page=dev%3AWishList
https://tiki.org/tiki-index_raw.php?page=dev%3AQuality+Team


Drawing theÂ line
Why don't you draw the line and say, "this is what we do and that's it"?

Because of intertwingularity, it's very difficult to draw any lines. This is true for knowledge, it is
also true for software functionality.
And also, see answers previous question.

http://en.wikipedia.org/wiki/Intertwingularity


I reported a bug several months ago and it
has not beenÂ fixed

Pretty much the same answer as "Why don't you fix/improve the existing features instead of adding new ones?" above.



Are features everÂ removed?
Yes, but with care and consensus. We want to keep upgrades easy.

The goal is to have a useful application. Typically, features are removed because of the evolution of browsers or the web makes
them obsolete. Or it could be because another feature in Tiki becomes so powerful that it makes this one useless.

In a traditional small-core-and-tons-of-extensions model, code will die off on its own by lack of interest. In a wiki way, the
community must proactively do housecleaning. This is much like wiki pages, which should be re-factored, deleted or merged.

Please see: dev:Endangered Features

https://tiki.org/tiki-index_raw.php?page=dev%3AEndangered+Features


Will features continue to be addedÂ forever?
Well, that depends on the people that participate in the community. So far, the number of features has been an asset, not a

liability. Should this change, we'll adapt at that time. It doesn't matter how many features you offer, people still ask for more.

Of all the innovations, the rate of the totally new features has been slowing and what we see a lot is how various features are
each improving and blending more tightly with other features. Ex.: doc:Pretty Tracker.

You can shape the future of Tiki 

http://dev.tiki.org/Major+Features+Missing+In+Tiki
https://tiki.org/tiki-index_raw.php?page=doc%3APretty+Tracker


Continuity
How can I know Tiki will be there in 5-10 years? What about stability/long-term support?

Predicting the future is very hazardous. However, as the past can often be an indicator for the future:

Tiki has evolved since 2002. Please see Continuity.
The source code is free software and will always be.
All the data is stored in simple database tables. If need be, it can be exported to be re-
imported in another application. Of course, this is not trivial, and migration tools from one app
to another tend to be fragile. However, the data is there.
There is a large install base.

So, Tiki should be around as long as the technology is around. If you know what will replace the web browser, please tell us 

So Tiki will be around. But how good will it be? Well, the rate of evolution, innovation, etc. depends on the participation of people
just like you .

Thus, think long-term. Overall, we should be mindful about how our immediate actions fit in the long-term. Tiki will never be
"finished" so any shortcuts now can come to bite us down the road (especially if someone else is stuck cleaning up the mess).

See: Dev:Maintainability

https://tiki.org/tiki-index_raw.php?page=Continuity
https://tiki.org/tiki-index_raw.php?page=Dev%3AMaintainability


All in oneÂ model
Tiki has an all-in-one approach to doc:features. Think of it as a suite of applications like Open Office. The features are built-in and
all optional instead of offered via 3rd party modules/extensions/plugins. Because of this model (and the open participation), Tiki

has more built-in features than any other Open Source Web app (if you know of one, please let us know!).

https://tiki.org/tiki-index_raw.php?page=doc%3Afeatures


Best-of-breed applications
I prefer a collection of best-of-breed applications that I assemble

This can work only if you have the skills to tweak these applications to make them work together. And when each component is
upgraded, you have to make sure the glueware is still working. And you need the programming skills to make this happen. If you
don't complete the job, you will have a "Frankensite" patchwork of 3-4 apps, each with their own username/group & permission

system. Each has its own template & menu system (if you care to unify the look & feel + navigation). Each will have its own
search engine.



Lean apps /Â complexity
I like simple apps because I can easily tweak the code to my liking

Tiki is a large application and there is a learning curve. However, it is easy to tweak. It was designed with simplicity & community
development in mind. Please see the introductory documentation for developers and Coping with complexity.

http://dev.tiki.org/Hello+World
https://tiki.org/tiki-index_raw.php?page=Coping+with+complexity


Survival of theÂ fittest
Most other CMS systems have several "modules" to choose from. Since there is competition amongst the "modules", it is

the survival of the fittest

That sounds like it could work and of course it can. However, this is open source software, not biology... So is it the most
efficient? There are several challenges with this approach.

The site admin has to find, evaluate, test, install and maintain each one of these modules. If1.
there are 3 wikis for Xoops for example, which one to choose? In Tiki, we believe if several
people want to work on a specific feature, it is a lot more efficient, (and fun!) to work together.
Please see this interesting Drupal note and this one too.
The site admin must manage the versionning of the application vs the "modules". Some2.
"modules" can be abandoned by their authors. So in the end, it is very important to choose
your modules well. And again, choosing the tool according to your needs.

Yes, but competition is good

Competition is not the only path to innovation. Say you wanted to have the best possible definition for a word on Wikipedia
and you have 9 volunteers to help. What would you do? Would you create 3 teams of 3 and pick the best definition? Or would you
have all 9 people collaborate? If you split into 3 teams, chances are, when you evaluate what the three teams came up with, each
team will have something you like. Yet, by picking 1 team and discarding the two others, you are wasting talent, motivation and
energy. Now, it makes perfect sense to split the 9 people in smaller teams according to specific responsibilities towards a
common goal. If this model makes perfect sense to generate content for Wikipedia, why is it not a good model for software

development? Imagine 2 communities of the same size. One with the competition model and the other, with the collaboration

http://en.wikipedia.org/wiki/Survival_of_the_fittest
http://drupal.org/node/23789
http://drupal.org/node/93420


model. Which one will have the most code review? which one will have more code/functionality duplication?

Feature interactionÂ problem
Features in the core generally tend to interact better together than external code. So how is this in Tiki?

Feature interaction is a huge challenge with all software. In Tiki, it's not perfect but it's quite good.

dev:Bugs and wishlist stats indicates less than 2% of reported bugs as "Bug: conflict of two
features (each works well independently)"

It's surely higher than 2% because not all people reporting bugs may have detected this as
the cause of the bug. However, it's massively lower than core/third-party extension system.

All the features are in the core so they share the same eyeballs
There is very little feature duplication so this limits the Combinatorial explosion you have with
hundreds or thousands of 3rd party extensions.

http://en.wikipedia.org/wiki/Feature_interaction_problem
https://tiki.org/tiki-index_raw.php?page=dev%3ABugs+and+wishlist+stats
http://en.wikipedia.org/wiki/Combinatorial_explosion


Lack of featureÂ development
If there is only one of each feature, what happens when it doesn't do what I want/need?

Avoiding feature duplication doesn't prevent people from improving since participation is open. If there are several authors that
want to improve a feature, but have different needs/goals, they can just make them optional, and let end-users choose. It's free

software. If you can code, just add the feature you need. If you can't code, try to find someone to help you.

Yes, but system Z has hundreds of modules. Extensions / 3rd party modules listings of popular PHP applications:

Drupal modules
Xoops modules
Typo3 extensions
Mediawiki extensions
WordPress plugins
Joomla Extensions

In the early days, search engines would boast on how many million web pages they indexed. And we had to navigate through
pages and pages of results to find relevant stuff.

The important question is: does the system do what you need now and for the foreseeable future. (This is just as true if you are
picking Tiki vs another solution)

http://drupal.org/project/Modules/category
http://www.xoops.org/modules/repository/
http://typo3.org/extensions/repository/fulllist/
http://www.mediawiki.org/wiki/Category:All_extensions
http://wordpress.org/extend/plugins/
http://extensions.joomla.org/


Tiki has over 1500 preferences/features/settings built-in, vs the sometimes 10 000+ external extensions/mods/plugins of some
fine applications. But let's not forget that some of the those external packages are features duplication.

The important thing is do you see a feature that you want / need that is not offered by Tiki (please see feature list, modules list,
mods list and all plugins)

Feature-creep
What about feature-creep? If you let just anyone add anything, it'll be chaos.

One person's "killer app" feature may be useless bloatware for another.

Tiki is a shared resource. We want it to be useful for various people, to solve various needs, in various contexts. If it's not solving
your problem, chances are, an enhancement would be useful to other people. The trick to try to use & extend the existing feature

set. If there is nothing there that can help, it's to translate your need into something as generic as possible, so many problems
can be solved with the same code, by changing labels or flipping a few switches. Of course, it's tricky to know this if you are new

to the application, so you can work with the community to find solutions. A good example (of a generic feature) is trackers.
Trackers are a database, forms and report builder, so you can create a bug trackers, a todo list, a mini-CRM, etc, whatever you

want. You can build unlimited custom applications specifically tailored to your needs.

The real challenge is to find a technical and organizational way to deal with the Law of Software Envelopment.

doc:Tiki8 has filters in the admin panels which will lower the learning curve.

But too many features is confusing!

Yes, it can be. If you don't use a feature, don't activate it! And http://profiles.tiki.org are there to help

http://doc.tiki.org/feature
http://doc.tiki.org/Modules
http://mods.tiki.org/
http://doc.tiki.org/PluginManager
http://doc.tiki.org/trackers
http://www.catb.org/~esr/jargon/html/Z/Zawinskis-Law.html
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki8
http://doc.tiki.org/Tiki8#Admin_panels_-_filtering_basic_and_advanced_preferences
http://profiles.tiki.org


"I just need a {add your feature name here}. This site is just a hobby, won't be big and professional like... "

Even if you think you just need a wiki or a forum now, isn't it nice that if you need a new feature later on, it will be there waiting
for you? Just activate it, assign permissions and add links to your navigation.

Dead-end features / DependencyÂ hell
I was using system X. My problem: I was using a third party module. It is no longer supported. The developer has given up. I

can't upgrade my site without breaking the module. Could this happen to me with Tiki?

This is called Dependency hell. The way Tiki is designed and organized, this has much less chance of happening. Yes, some
doc:Features can become unmaintained. However, they continue to work. If a developer enhances something in Tiki which breaks

something else.

The developer has access to all the Tiki code so (s)he can test and fix anything that is risky.1.
We will know quickly via bug reports & IRC2.
The developer can fix whatever he broke because everything is in SVN. The code is not3.
scattered across dozens of websites. Tiki is very centralized. All info on *.tiki.org sites and in
SVN. For better or for worse, backward compatibility (we call it "Respect Environment") is a rule
of Tiki.
While for Drupal, "Any feature that we add to Drupal core needs to be good enough to last us4.
at least 3 years in a relatively unchanged state.", if you like biology, think of it as Tiki being
more adaptable to changes because we don't have to worry about breaking hundreds of third

http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b?hl=en
http://en.wikipedia.org/wiki/Dependency_hell
https://tiki.org/tiki-index_raw.php?page=doc%3AFeatures
https://tiki.org/tiki-index_raw.php?page=IRC
http://dev.tiki.org/3Rules
http://dev.tiki.org/3Rules
http://drupal.org/node/278173
http://drupal.org/node/278173


party modules/plugins. We can undertake massive changes with each major version, like
doc:Workspaces in doc:Tiki4.

How many times in the 10+ years history of Tiki have users ended up with data in dead-end abandoned code? This is very very
rare (This could have happened with daily snaphosts of SVN versions, but not when using stable versions)

Reinventing theÂ wheel
Tiki is like its own World, it is always reinventing the wheel.

While Tiki is self-sufficient, it offers many doc:interactions with the outside World (services, technologies, standards, code re-use,
data exchange, etc). Also, Tiki Dogfood.

Yes, but what about phpBB?

Sometimes, it's less work and more future-proof to develop your own features. Just because Tiki doesn't integrate phpBB like
many other projects out there, it doesn't mean we are reinventing the wheel. Tiki forums are very powerful and support

threading, wiki syntax, attachments, etc.

In reality, Tiki relies heavily on dev:External Libraries, to have less code to maintain and to leverage other projects experience.
We try to contribute back (upstream) as much as possible. More than half of dev:Source Lines of Code is from other FOSS

projects.

https://tiki.org/tiki-index_raw.php?page=doc%3AWorkspaces
https://tiki.org/tiki-index_raw.php?page=doc%3ATiki4
https://tiki.org/tiki-index_raw.php?page=doc%3Ainteractions
https://tiki.org/tiki-index_raw.php?page=Dogfood
http://tiki.org/Why+Wiki+Syntax+is+Important
https://tiki.org/tiki-index_raw.php?page=dev%3AExternal+Libraries
https://tiki.org/tiki-index_raw.php?page=dev%3ASource+Lines+of+Code


Waste of diskÂ space
Yes, but Tiki take a lot of disk space, especially for a PHP application.

Tiki 3.1 weighs 78 megs unzipped (24 megs zipped). Hard disk is really cheap these days. You can also use doc:MultiTiki to have
one set of files for several Tiki-powered sites.

If you really need to save disk space, you can delete a few files.
Just the changelog.txt is two megs!
There are also the language files in lang/. You can safely delete languages you are not using.
There are 23 Megs (29% of total) for the 39 languages. Recent versions of Tiki now have
much smaller language files.

Ok, so if it's so easy, why not package them separately?

Sure, if someone wants to do it  Do you volunteer?

But it's really just simpler for everyone to just bundle all in one clean (albeit large) file. Many people install via Control Panels and
thus, don't necessarily use, know or even have access to FTP.

https://tiki.org/tiki-index_raw.php?page=doc%3AMultiTiki
changelog.txt
https://tiki.org/tiki-index_raw.php?page=Control+Panels


Performance
Tiki is really slow, consumes a lot of RAM & CPU cycles

In Tiki, we have a concept called doc:WYSIWYCA. What You See is What You Can Access. The permissions system is very
elaborate. Each user has a different experience, showing him/her what has changed since their last login (and only showing links

for items which they are allowed to see). This takes more queries.

Yes, but even for anonymous users, Tiki uses way more resources (SQL queries, RAM, etc) than other CMSs

It would be interesting to have a real analysis to see if it's true. You would have to compare several apps with relatively similar
content, features, etc. It's not that easy because apps are different. But let's say it's true -> Short answer for 98% of websites out

there: who cares? Computers are getting faster & cheaper every month. People power is more expensive than machines. Yes,
the code could and should be optimized in certain places. Yes, we should put some indexes on certain tables. However, we must

always keep in mind that keeping the code simple makes it easier to understand, to customize and to fix. For the 2% of high-
volume read-only sites: Please collaborate within the Tiki community to find ways to make Tiki faster. Ex.:

http://varnish-cache.org/ Please also see doc:performance for advice.

https://tiki.org/tiki-index_raw.php?page=doc%3AWYSIWYCA
http://varnish-cache.org/
https://tiki.org/tiki-index_raw.php?page=doc%3Aperformance


Security
Bottom line: Systems that are heavily reliant on plug-ins are more apt to have security vulnerabilities for which there is no known
patch. Why is this? Even frequently-used plug-ins are not always actively maintained and enhanced by their original developers.

Source

Another risk: http://wpmu.org/why-you-should-never-search-for-free-wordpress-themes-in-google-or-anywhere-else/ Tiki (by
default but can be changed by the admin) doesn't permit PHP code in templates, which is a nice benefit of Smarty.

On the other hand, Tiki has more code. And more code is more potential issues. Our solution to this is simple but effective: Each
file in Tiki has a feature-check, which essentially renders the file inactive. If a security vulnerability is disclosed, admins can turn

off that feature.

Both models have risks. We feel it's a good trade-off.

http://www.cmswatch.com/Blog/1823-Beware-Drupal,-Joomla!-plug-in-vulnerabilities
http://wpmu.org/why-you-should-never-search-for-free-wordpress-themes-in-google-or-anywhere-else/
https://tiki.org/tiki-index_raw.php?page=Smarty


API
Yes, but system Y has an API

Everytime people ask for an API, it's important to ask the question: "What are you trying to do?"

Tiki has no formal "API" but has several ways to connect/enhance/interact. It is designed to be easy to add functionality. Do you
think over 200 people would have contributed via SVN if it was difficult? dev:Hello World

Now, depending on what people are trying to do, they should look at doc:Webservices, doc:Plugins, doc:Mods, Doc:Trackers,
Doc:Interaction, Doc:External Authentication, etc.

https://tiki.org/tiki-index_raw.php?page=dev%3AHello+World
https://tiki.org/tiki-index_raw.php?page=doc%3AWebservices
https://tiki.org/tiki-index_raw.php?page=doc%3APlugins
https://tiki.org/tiki-index_raw.php?page=doc%3AMods
https://tiki.org/tiki-index_raw.php?page=Doc%3ATrackers
https://tiki.org/tiki-index_raw.php?page=Doc%3AInteraction
https://tiki.org/tiki-index_raw.php?page=Doc%3AExternal+Authentication


Extensibility
See Extension points

http://dev.tiki.org/Overview#Extension_points


Examples of success with pluginÂ model
Yes, but Firefox uses the plugin model and it's very successful

Please read:
http://www.howtogeek.com/179213/why-browser-plug-ins-are-going-away-and-whats-replacing-them/

There is no question that the plugin model can and does work. This is to illustrate and explain how/why the all-in-one model
works for Tiki.

We have to be careful about comparing a web application to a desktop app.1.
File permissions is tricky for web apps.

Firefox has a nice installer to upgrade the extensions, which makes it very easy for the end2.
user.
If you have many extensions, you will have noticed that they are not always compatible with3.
the latest release.
Do Firefox plugins have any kind of interaction with other plugins? If this is what you have in4.
mind, please see mods and plugins)
Add-ons behaving badly: the challenges of policing the Firefox ecosystem5.
Open Source Browsers Change Their Tunes on Extensions6.

http://www.howtogeek.com/179213/why-browser-plug-ins-are-going-away-and-whats-replacing-them/
http://mods.tiki.org/
http://doc.tiki.org/All+Plugins
http://arstechnica.com/business/news/2012/02/add-ons-behaving-badly-the-challenges-of-policing-the-firefox-ecosystem.ars
http://ostatic.com/blog/open-source-browsers-change-their-tunes-on-extensions


Experimental
But what if a feature is not good (yet)?

During the development phase, developers can use dev:Experimental branches.

Once a feature works (even if basic), it can be added to the main code base, and tagged as doc:Experimental

https://tiki.org/tiki-index_raw.php?page=dev%3AExperimental+branches
https://tiki.org/tiki-index_raw.php?page=doc%3AExperimental


Is the Tiki modelÂ better?
It is very risky to say something is better. The answer is it depends.

The Tiki model works for Tiki. And the community will adapt as needed. The Tiki model has benefits and drawbacks, therefore,
the Tiki project has different challenges to tackle than other comparable projects.

In the small-core-and-thousands-of-extensions model, an important core competency is the Package management and the big
challenge is dependency hell, which has prompted calls for Synchronized Releases.

Tiki has always, by its all-in-one model, had synchronized Releases. However, this brings another set of challenges. (There is no
free lunch!).

BENEFITS

Tighter integration
Less feature overlap/duplication
Less code duplication & more code review
Higher collaboration
Lower total cost of ownership for users (easy upgrades, less chance of being in a dead-end
feature)
Users and developers can count on the fact that code or features are present.

This reduces code duplication because developers can call that code. (instead of duplicating
code to avoid adding a dependency)
Something like http://profiles.tiki.org which helps to configure your site is possible. Otherwise,

http://en.wikipedia.org/wiki/Package_management_system
http://en.wikipedia.org/wiki/Dependency_hell
http://thecoccinella.org/synchronized-releases
http://profiles.tiki.org


it would involve downloading additional code and it would be complicated.
DRAWBACKS

Huge codebase (Over 1 million lines of code)
Most users only use a small (but different!) part of it.

Huge admin panels with over 1500 settings/preferences/options...
Big concern for backward-compatibility, which can slow progress.
Inconsistency in codebase.
Learning curve
Dispersed focus
wp:Code_rot

Some things are good in Tiki and can be attributed to the model, but that doesn't mean other projects don't or can't have.

For example, Tiki, has one full documentation for the whole application (over 1000 pages). It would be more difficult, but not
impossible to make a similar resource with the small core/thousands of extensions model.

Open participation

https://tiki.org/tiki-index_raw.php?page=wp%3ACode_rot


If you let everyone contribute, it'll be chaos.
How can it possiblyÂ work?

That is what some said about http://wikipedia.org/

http://wikipedia.org/


Conflicts
If I add my features to the core, then, any of hundreds of people can break my code!

Why would they possibly want to do that?

If you let "just anyone" participate, won't you get in trouble with malicious or incompetent people?

Answer: eyeballs

http://en.wikipedia.org/wiki/Linus's_law


Documentation
The documentation is missing, incorrect, out of date or just plain bad.

The quality of the documentation is variable. Some parts excellent, some are bad. There can be a correlation with the quality or
activity level of the feature itself.

The good news is that it's a wiki, so please login and fix it. If you know it's wrong but don't know what is right, ask in the Mailing
Lists, forums or http://irc.tiki.org

The project should disallow code submissions without documentation updates.

This is certainly a possible model and likely used by some other projects. However, this is not the case in the Tiki community.

Some developers are fluent in PHP/MySQL but are not good in written English.1.
Some developers are not interested or good at writing documentation.2.

If you force developers to make unit tests, add documentation, or whatever, you will end up with less contributions. There is a
valid debate to say "I prefer less contributions of higher quality". We are in the "commit early, commit often" mood and "things

will improve with each version".

Some could argue that it's preferred to focus developers on adding/fixing features and it's up to the documentation team to
handle documentation.

Whose job would it be to refuse (rollback!) a wanted feature because the developer didn't document? Can you imagine the
debates there would be?

http://doc.tiki.org
https://tiki.org/tiki-index_raw.php?page=Mailing+Lists
https://tiki.org/tiki-index_raw.php?page=Mailing+Lists
https://tiki.org/forums
http://irc.tiki.org


What often happens: Developers put up a skeleton documentation. Enough so that end-users get an idea of what it does and
then, they can write proper documentation (hopefully with screenshots) from an end-users's perspective. Power users can also

"interview" developers and capture this information to the documentation.

Code quality
The code sucks and is inconsistent

Tiki is the FLOSS Web Application with the most built-in features, is 10 years old and 250 people have contributed to the code
base. It's not surprising that code quality and style varies.

Take any open source application and ask around if the code is good, is modular, scalable, etc. Someone will always find
something to complain about. "critique" is very easy. I am sure if some of your work is available to public scrutiny, you will know
what I mean  The question should be: Does it work or not? Does it solve my needs for now and the foreseeable future? Can I
improve it? Most people use Tiki without changing any code. So code structure/philosophy/organization is of no importance to

them. They just want something that works and something which they can upgrade easily over time.

Also, Tiki was started with the technologies available in 2002: PHP 4, MySQL 3, Smarty 2, and no jQuery!

The good news is that various parts of Tiki undergo massive improvements. Ex.:

Change to new doc:profiles (Tiki3)
Moving to dev:Zend Framework 1.10 (Tiki3)
Doc:Themes (Tiki3)
Moving to PDO (Tiki4)
Moving to jQuery (Experimental in Tiki3, official in Tiki4)
dev:Permission Cleanup to permit better category permissions (Tiki4)

https://tiki.org/tiki-index_raw.php?page=FLOSS+Web+Application+with+the+most+built-in+features
https://tiki.org/tiki-index_raw.php?page=doc%3Aprofiles
https://tiki.org/tiki-index_raw.php?page=dev%3AZend+Framework
https://tiki.org/tiki-index_raw.php?page=Doc%3AThemes
https://tiki.org/tiki-index_raw.php?page=dev%3APermission+Cleanup


dev:Modules (Tiki4)
Toolbars refactor (Tiki4)
Preferences in admin panels moved from static to dynamic, to permit searchable admin panels
(Tiki5)
Slideshows moved from native code to S5 (Tiki5)
Logs revamp (Tiki5)
Javascript refactor (Tiki5)
UTF-8 support revamp (Tiki5)
WYSIWYG from FCKEditor2 to CKEditor3 (Tiki6)
Spreadsheet from native JavaScript front-end to jQuery.sheet (experimental in Tiki5 and default
in Tiki6)
Blog revamp (Tiki6)
HTML5 (Drop support for IE6) (Tiki7)
Mobile from HAWHAW to jQuery Mobile (Tiki7)
Theme revamp for theme generator (Tiki7)
dev:Modules revamp for drag & drop (Tiki7)
Search with Zend_Search_Lucene (Tiki7)
Use PHP autoload (Tiki7)
Parser revamp for plugins (Tiki7)
Zend Framework 1.11 (Tiki7)
doc:Trackers revamp in Tiki7 and Tiki8

https://tiki.org/tiki-index_raw.php?page=dev%3AModules
https://tiki.org/tiki-index_raw.php?page=dev%3AModules
https://tiki.org/tiki-index_raw.php?page=doc%3ATrackers


Language handling (getstrings) (Tiki8)
IPv6 support (Tiki8)
Smarty 3.0 (Tiki8)
Category refactor (Tiki8)
Comments refactor (Tiki8)
internal events (Tiki8)
Smarty 3.1 (Tiki9)
InnoDB support (experimental in Tiki8 and optional in Tiki9)
Moved to dev:Composer (Tiki11)
dev:URL Rewriting Revamp (Tiki11)
etc.

The all in-one model actually makes it easier to do massive changes from one version to the next.

The code is not modular enough

Please see: dev:Modularity

I am a professional. Really, Tiki's design sucks. It should be more object-oriented

Often, people with (or even not so) strong programming skills do not understand the unique challenges & dynamics of an Open
Source project, especially a community-development one like Tiki. Some will design something which is supposed to be

http://dev.tiki.org/blogpost20
https://tiki.org/tiki-index_raw.php?page=dev%3AComposer
https://tiki.org/tiki-index_raw.php?page=dev%3AURL+Rewriting+Revamp
https://tiki.org/tiki-index_raw.php?page=dev%3AModularity


"superior", but it is too complex for people to use & participate to. Over 250 people have contributed to Tiki via CVS/SVN. That is
a lot of eyeballs! The code is simple and has community coding in mind. Please see the goals of Luis Argerich, Tiki founder.

Please also see: dev:I know this is all wrong, but fear it might be right

Tiki's design sucks. It's too big. It won't scale. It will implode. It's impossible to have so many features.

Tiki has been going on strong for 10+ years now. Tiki has more built-in features than any other open source web application
(which is good or bad depending on your point of view).

Not only does it have a ton of features, it also has a very fast release cycle. Many powerful web apps have a release cycle of 1.5
or 2 years (for the core; modules evolves faster), whereas twice per year for Tiki.

2008-08 :: http://doc.tiki.org/Tiki2
2009-05 :: http://doc.tiki.org/Tiki3
2009-11 :: http://doc.tiki.org/Tiki4
2010-06 :: http://doc.tiki.org/Tiki5
2010-10 :: http://doc.tiki.org/Tiki6
2011-06 :: http://doc.tiki.org/Tiki7
2011-11 :: http://doc.tiki.org/Tiki8
2012-06 :: http://doc.tiki.org/Tiki9

2012-12 :: http://doc.tiki.org/Tiki10
2013-07 :: http://doc.tiki.org/Tiki11
2013-11 :: http://doc.tiki.org/Tiki12

2014-04 (planned) :: http://doc.tiki.org/Tiki13

http://en.wikipedia.org/wiki/Linus's_law
http://dev.tiki.org/Hello+World#Introduction
https://tiki.org/tiki-index_raw.php?page=dev%3AI+know+this+is+all+wrong%2C+but+fear+it+might+be+right
http://doc.tiki.org/Tiki2
http://doc.tiki.org/Tiki3
http://doc.tiki.org/Tiki4
http://doc.tiki.org/Tiki5
http://doc.tiki.org/Tiki6
http://doc.tiki.org/Tiki7
http://doc.tiki.org/Tiki8
http://doc.tiki.org/Tiki9
http://doc.tiki.org/Tiki10
http://doc.tiki.org/Tiki11
http://doc.tiki.org/Tiki12
http://doc.tiki.org/Tiki13


The Tiki model can'tÂ work
If it's not run like a professional project, it will fail.

There are many points of view over what is "professional" and "failure" vs "success". Some people could view that Wikipedia is
not "professional" but it's hard to argue that it's a failure ;-)

For many years, some people have expressed these concerns. There was a lot of FUD being spread around. Perhaps Tiki is like
Wikipedia and is "is one of those things impossible in theory, but possible in practice.". However, here we are. Tiki is 10 years old.

It's a mature, very powerful application, with a large community of contributors, with tons of doc:features and which is tons of
websites & Intranets. Of course, there are a lot of things to improve and there will always be. Remember: if you don't need a

feature, don't activate it. However, if you need it in the future, it's only a few clicks away. And remember also, Tiki is open source
and open development. YOU can participate to its future.

And Tiki just won a Bossie!
http://www.infoworld.com/d/open-source/bossie-awards-2010-the-best-open-source-applications-150&current=9&last=10

Things you can pretty much only do in an all-
in-oneÂ model

http://profiles.tiki.org
You can make profiles because you know the features (code) is always there

http://i18n.tiki.org
You can provide a site where all strings can be translated, in-context and web-based

http://en.wikipedia.org/wiki/Fear%2C_uncertainty_and_doubt
http://www.ted.com/talks/kevin_kelly_on_the_next_5_000_days_of_the_web.html
https://tiki.org/tiki-index_raw.php?page=doc%3Afeatures
http://www.google.com/search?hs=5R5&q=%22%2Ftiki-index_raw.php%22&btnG=Search
http://www.google.com/search?hs=5R5&q=%22%2Ftiki-index_raw.php%22&btnG=Search
http://www.infoworld.com/d/open-source/bossie-awards-2010-the-best-open-source-applications-150&current=9&last=10
http://profiles.tiki.org
http://i18n.tiki.org


If you have duplicate extensions for something, you can't dogfood them all.
etc

Todo
Move all the content here, or at least link to it.
Move some stuff out of Hello World
address objections/questions

You can't be good at everything
Wikipedia has great knowledge in most domains, because it leverages a community. The
same can be done for code.

https://tiki.org/tiki-index_raw.php?page=dogfood
http://dev.tiki.org/tiki-pagehistory.php?page=Hello+World&diff_style=htmldiff&compare=Compare&newver=0&oldver=105


Some importantÂ links
A Process That Is Not, IEEE Software, November/December 2009 (vol. 26 no. 6), ISSN:
0740-7459 by Hakan Erdogmus
http://sourceforge.net/blog/podcast-tikiwiki/
How CMS architecture affects dev communities - A case study of Drupal, Tiki Wiki and XOOPS
dev:Hello World
SWOT
Teams
http://rocococamp.info/WikiWay
http://montrealtechwatch.com/2008/10/25/software-development-the-wiki-way/
The Wiki Way
The Cathedral and the Bazaar
http://c2.com/doc/wikisym/WikiSym2006.pdf
Books
Wikipedia content guidelines and how they relate to Tiki software features
Modular Application Architecture, presentation by Kore Nordmann and Tobias Schlitt

Tiki is somewhat a counter example to this presentation but it's important to think how Tiki
has solved the problems in a different way.

http://www.reddit.com/r/programming/comments/1a7gns/whenever_somebody_sends_you_a_p
ull_request_give/

https://tiki.org/dl3125
https://tiki.org/dl3125
http://sourceforge.net/blog/podcast-tikiwiki/
http://prezi.com/bemzj02mmypm/how-cms-architecture-affects-dev-communities/
https://tiki.org/tiki-index_raw.php?page=dev%3AHello+World
https://tiki.org/tiki-index_raw.php?page=SWOT
https://tiki.org/tiki-index_raw.php?page=Teams
http://rocococamp.info/WikiWay
http://montrealtechwatch.com/2008/10/25/software-development-the-wiki-way/
http://www.aboutus.org/The_Wiki_Way
http://catb.org/esr/writings/cathedral-bazaar/
http://c2.com/doc/wikisym/WikiSym2006.pdf
https://tiki.org/tiki-index_raw.php?page=Books
https://tiki.org/tiki-index_raw.php?page=Wikipedia+content+guidelines+and+how+they+relate+to+Tiki+software+features
https://joind.in/talk/view/3484
http://www.reddit.com/r/programming/comments/1a7gns/whenever_somebody_sends_you_a_pull_request_give/
http://www.reddit.com/r/programming/comments/1a7gns/whenever_somebody_sends_you_a_pull_request_give/


http://fedoraproject.org/wiki/Staying_close_to_upstream_projects#Why_push_changes_upstrea
m.3F
http://blog.versioneye.com/2014/02/18/why-your-software-project-will-slowly-die-without-contin
uous-updating/
http://blog.open-xchange.com/2014/04/15/what-makes-swiss-army-knives-so-successful/
http://nic.wiki/about/wiki-values/ -> Assume Good Faith, Be a Builder, Change is Cheap, Radical
Trust, Real People, Refactoring, Transparency, Work on What Interests You

Alias
philosophy-pt
development model-pt
organizational model-pt
Governance-pt
doocracy-pt
do-ocracy-pt
Tiki model-pt
The Tiki model-pt
Tiki way-pt
The Tiki Way-pt
all-in-one model-pt
all-in-one-pt

http://fedoraproject.org/wiki/Staying_close_to_upstream_projects#Why_push_changes_upstream.3F
http://fedoraproject.org/wiki/Staying_close_to_upstream_projects#Why_push_changes_upstream.3F
http://blog.versioneye.com/2014/02/18/why-your-software-project-will-slowly-die-without-continuous-updating/
http://blog.versioneye.com/2014/02/18/why-your-software-project-will-slowly-die-without-continuous-updating/
http://blog.open-xchange.com/2014/04/15/what-makes-swiss-army-knives-so-successful/
http://nic.wiki/about/wiki-values/
https://tiki.org/tiki-editpage.php?page=philosophy-pt
https://tiki.org/tiki-editpage.php?page=development-model-pt
https://tiki.org/tiki-editpage.php?page=organizational-model-pt
https://tiki.org/tiki-editpage.php?page=Governance-pt
https://tiki.org/tiki-editpage.php?page=doocracy-pt
https://tiki.org/tiki-editpage.php?page=do-ocracy-pt
https://tiki.org/tiki-editpage.php?page=Tiki-model-pt
https://tiki.org/tiki-editpage.php?page=The-Tiki-model-pt
https://tiki.org/tiki-editpage.php?page=Tiki-way-pt
https://tiki.org/tiki-editpage.php?page=The-Tiki-Way-pt
https://tiki.org/tiki-editpage.php?page=all-in-one-model-pt
https://tiki.org/tiki-editpage.php?page=all-in-one-pt


Wiki Way model-pt
The Wiki Way applied to software development-pt
The Wiki Way applied to software-pt
The Wiki Way for software-pt
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