
Overview
Below are notes I (zaufi) wrote during code Tiki core prototype. You may see the source code in
$(CVSROOT)/tests/core.

See also
TikiCoreWishlist
TikiPackager
TikiPackageRemover
TikiInstallFeatureDev
GongosViewOnCoreAndTiki

Implementing Tiki Core Prototype



System Init
The main purpose is to initialize 'low level' components during core construct... It is like runlevel
startup scripts in linux
Initialization sequence can be extended by adding scripts into init.scripts directory

Name of script file should have the following format: NN-name.php, where NN is a 2 digit
number used to define execution order
00-name.php is executed first; 99-name.php is executed last

Typical examples of such scripts:
add include paths for PHP
database connectivity and low level init
inherit and make smarty instance

All of above will replace tiki-db.php (with local.php), setup.php and some (most? -terence) parts of
tiki-setup_base.php/tiki-setup.php into well organized and logically independent ordered execution
scripts

Tiki Objects Tree
All objects in Tiki organized in the Tree
Every node of the Tiki Objects Tree (TOT) have associated ACL (Access Control List)
Unique key of the object in Tiki system is the pair of objectID and objectType
Object type should be registered by special API

ID of object type assigned by programmer — not by the system (because objectType should
remain the same after registering/unregistering)

Any object in system should be in the Tree, else it is impossible to determinate ACL for that object
core objectTypes like user and group cannot be unregistered
There is API to manage objects in the Tree

Object Types API
register/unregister object type
list registered object types
check if given object type registered

Objects Management
add/remove object from the Tree
get/set parent for object
get/set 1st level childs for object

Rights (Permission) Management
grant/revoke one object's right to perform an action on another object
check if given an object has a certain right
examples of actions: read/write/lock/delete/undo/upload, etc.
not all actions apply to each object; some objects are not even "active"

Consider using phpGACL as 'low level' layer

http://phpgacl.sourceforge.net/


Core Object Types
'Core object types' mean that it is impossible to unregister such object types and they are exists
just after installation. They are exists always ('till system exists .
There is attributes of 'object type' entity in Tiki

object_type — numbered ID assigned by programmer
name — human readable name
description — hint what this type is.
can_contain — list of object types which can be contained (be child) of instances of this object
type

List of 'core' objects ...
[+]
Maybe sometimes in future we will implement full featured 'Tiki Object Schema' with inheritance
relations among Object Types... 

Core objects
by default the only object of type 'User' is present... it called 'admin' — user with default password
and admin rights on TOT top (root).
another bunch of 'default' Tiki Objects is a core 'Extensions' objects like

Admin interface
Extension to handle User objects
Extension to handle Group objects
Extension to handle Container objects
Maybe 'Workplace Layout and Theme Control' can be extension(s) too 

To make 'core objects' uninstallable it is enough not to provide corresponding scripts so system
can't invoke it and can't remove this extensions — just a little trick — of couse admin interface
will show this like 'uninstallable extensions'
Default location of all objects is top of the Tiki Objects Tree

Extensions Management
Lifecycle of Tiki Extension
[+]
What registering of extension is?

It is the way to tell what an extension is ready to be enabled and configured — i.e. all
installation procedures done and extension can be used
actualy happened: add record into 'extensions' table with the following info

main extension file name (i.e. mymegacoolextension.php)
extension class name

should be child of TikiExtension core class
version info (number?) — can be asked from class
description text (to display in interface) — can be asked from class
smth else?

What is the registering of page?
assume that extension register page (URL) like 'tiki-name.php'... this mean that core should
create such file and place inclusion of core files and make a call to extension after some
checks...
... also extension needs to provide method name core should call if this page requested ...

javascript:flipWithSign('id1.7141519110975E+15')
javascript:flipWithSign('id1.714151911115E+15')


... 2b continued ...


	Overview
	See also
	Implementing Tiki Core Prototype
	System Init
	Tiki Objects Tree
	Core Object Types
	Core objects
	Extensions Management

