Overview

Below are notes I (zaufi) wrote during code Tiki core prototype. You may see the source code in
$(CVSROOT)/tests/core.

See also

e TikiCoreWishlist

e TikiPackager

e TikiPackageRemover

e TikilnstallFeatureDev

¢ GongosViewOnCoreAndTiki

Implementing Tiki Core Prototype




System Init

e The main purpose is to initialize 'low level' components during core construct... It is like runlevel
startup scripts in linux
« Initialization sequence can be extended by adding scripts into init.scripts directory
o Name of script file should have the following format: NN-name.php, where NN is a 2 digit
number used to define execution order
o 00-name.php is executed first; 99-name.php is executed last
e Typical examples of such scripts:
o add include paths for PHP
o database connectivity and low level init
o inherit and make smarty instance
¢ All of above will replace tiki-db.php (with local.php), setup.php and some (most? -terence) parts of
tiki-setup base.php/tiki-setup.php into well organized and logically independent ordered execution
scripts

Tiki Objects Tree

e All objects in Tiki organized in the Tree
e Every node of the Tiki Objects Tree (TOT) have associated ACL (Access Control List)
¢ Unique key of the object in Tiki system is the pair of objectID and objectType
¢ Object type should be registered by special API
o ID of object type assigned by programmer — not by the system (because objectType should
remain the same after registering/unregistering)
e Any object in system should be in the Tree, else it is impossible to determinate ACL for that object
e core objectTypes like user and group cannot be unregistered
e There is API to manage objects in the Tree
o Object Types API
» register/unregister object type
» list registered object types
= check if given object type registered
o Objects Management
» add/remove object from the Tree
= get/set parent for object
= get/set 1st level childs for object
o Rights (Permission) Management
» grant/revoke one object's right to perform an action on another object
» check if given an object has a certain right
= examples of actions: read/write/lock/delete/undo/upload, etc.
* not all actions apply to each object; some objects are not even "active"
e Consider using phpGACL as 'low level' layer



http://phpgacl.sourceforge.net/

Core Object Types

 'Core object types' mean that it is impossible to unregister such object types and they are exists
just after installation. They are exists always ('till system exists .
e There is attributes of 'object type' entity in Tiki
o object type — numbered ID assigned by programmer
o name — human readable name
o description — hint what this type is.
o can_contain — list of object types which can be contained (be child) of instances of this object
type
e List of 'core' objects ...
[+]
e Maybe sometimes in future we will implement full featured 'Tiki Object Schema' with inheritance
relations among Object Types...

Core objects

¢ by default the only object of type 'User' is present... it called 'admin' — user with default password
and admin rights on TOT top (root).
e another bunch of 'default' Tiki Objects is a core 'Extensions' objects like
o Admin interface
o Extension to handle User objects
o Extension to handle Group objects
o Extension to handle Container objects
o Maybe 'Workplace Layout and Theme Control' can be extension(s) too
e To make 'core objects' uninstallable it is enough not to provide corresponding scripts so system
can't invoke it and can't remove this extensions iZ— just a little trick — of couse admin interface
will show this like 'uninstallable extensions'
e Default location of all objects is top of the Tiki Objects Tree

Extensions Management

e Lifecycle of Tiki Extension
[+]
e What registering of extension is?

o It is the way to tell what an extension is ready to be enabled and configured — i.e. all
installation procedures done and extension can be used

o actualy happened: add record into 'extensions' table with the following info

* main extension file name (i.e. mymegacoolextension.php)
» extension class name
¢ should be child of TikiExtension core class
» version info (number?) — can be asked from class
» description text (to display in interface) — can be asked from class
» smth else?
e What is the registering of page?

o assume that extension register page (URL) like 'tiki-name.php'... this mean that core should
create such file and place inclusion of core files and make a call to extension after some
checks...

o ... also extension needs to provide method name core should call if this page requested ...



javascript:flipWithSign('id1.7141519110975E+15')
javascript:flipWithSign('id1.714151911115E+15')

... 2b continued ...




	Overview
	See also
	Implementing Tiki Core Prototype
	System Init
	Tiki Objects Tree
	Core Object Types
	Core objects
	Extensions Management

