
Intro
While developers may not all agree (any constructive opinions are welcome with the details in this
proposal, is it fair to say that a Tiki Core and Extension API is badly needed? Since this is a time-
consuming and difficult undertaking, we need to discuss this, come to a conclusion, and begin a new
CVS branch to implement this ASAP. The longer we wait, the more bloated and disorganized Tiki
becomes, and the more difficult the core implementation!

Tiki Core Components
Note: Core services do not offer any user interface — just API. All user interface managed by
corresponding extension... or some core extension — it is extension like all others.

Extensions Management
Scan for new/removed extensions
Maintain extensions table — i.e. sync DB table and actualy present files
Execute extension installation/uninstallation routinues

Install can include DB operations (adding new entries to existing or create new tables)
Also EM can install/uninstall packaged extension (what format?)
[+]
Maybe some consistency checking? I.e. detect broken installation of extension package or core
files and warn user.
Even more crazy: check signature (package or individual files) — for high secured Tiki sites

API for extensions
get list of installed/enabled extensions
is_installed('extension') / is_enabled("extension")

There is no other way except core API for one extension to get (and work with) instance of another
List of capabilities of extensions, like functions that give extensions to the system for the use of
other sections
Prerequisites (things that have to be installed to make it work, i.e. other extensions)
Conflicting extensions/capabilities (something that would be nice to avoid, but probably is not
possible, i.e. 2 extensions that give the same capability but in a different way, or use the same

javascript:flipWithSign('id1.7135592525714E+15')

table/field in a exclusive way)
smth else?

Objects and Permissions Management
Every extension may 'register' new object type it work with (can produce)
Tiki Core Objects — can't be unregistered (existed even if no extensions installed)
[+]
Every object in system belongs to some category (possible more than one). By default it is equal to
Root (Top) and maybe reassigned by admin later.
All Tiki objects belongs to))GlobalObjectsTree((

There is special containers in this tree
Users/Groups — core objects represent users and goups. Assigning permissions to whole
container mean that user granted rights to manage other users or gorups.
Installed Extensions — list all installed extensions here. Grant permissions mean that user
can manage (configure) some extension (or all of them if container permissions applied)
Categorized Objects — application objects (like wiki pages, articles, FAQs, etc.) and
categories. This is a categories tree in nowdays Tiki.

Permissions can be granted on Root of GOT or any other node/leaf of this tree
Permissions can be granted to user or group (role, smth else?)
Permissions given on some container will be inherited by all containers and objects below
Permissions can be revoked on some low level even if upper level grant such permisions... So we r
talking about effective permissions != assigned.
Maintain ACLs as internal run-time data structures
Evaluate user permissions on given object
[+]
API for extensions

manage user/group permissions on objects or categories ...)/revoke(...
check user permissions (is_granted(...)), evaluate permissions
list of permissions with description
extend core rights with extension's addon
object_type (user/group) and object_id (maybe name will be enough) should be passed as
arguments to all permission functions, so API can be used for 'effective permissions' evaluation
(i.e. w/o relogin admin can check what permissions granted to another user/group — of couse if
admin interface will allow this

API for user management
create/delete users
enum users
get/set user info (core attributes like name, smth else...)
get/set user preferences — map key => value
[+]

API for goup management
create/delete gorups
list groups
add/remove/list members
get/set group info (core attributes)

Work with core objects and permissions from extension should be possible only through API so
future changes (even rewrite) of PM subsystem possible, with unchanged external API interface of
couse.
More effective instead of permissions is to use rights...
[+]
... and take Tiki to another level of permissions rights management

javascript:flipWithSign('id1.7135592525773E+15')
javascript:flipWithSign('id1.7135592525858E+15')
https://tiki.org/tiki-editpage.php?page=...%29%2Frevoke%28...
javascript:flipWithSign('id1.71355925259E+15')
javascript:flipWithSign('id1.7135592525934E+15')

[+]
Mass user operations

Admin (user with 'a' on users container) can set/change properties of more than one user at
one operation...
... so admin can assign any property to user(s)... from module in interface to change theme...
Is it reasonable to talk about 'policies' (like Windowz policies) applied to user?

Integrated Debugging/Logging Facility
Need to have builtin debugging API

Good candidates are non-interface methods of Debugger class.
Is smth like `strace` can be good? (to trace API calls sequence)
Maybe some performance (profiler) couters can be implemented... to measure how long we execute
'core calls' and 'user calls'
Is it reasonable to add log to Tiki?

Admin may want to see whats happening (in details) while he sleep — so Tiki may record
user activity to log...

it may be not just 'wiki page updated' or 'forum created'...
but some admin option changed (to help to investigate 'who touch that checkbox'

Also (depending on verbose level) some extensions may spam info here...
Can be implemented as separate file (to helps grep/mail it or as DB table

Core Abstractions

javascript:flipWithSign('id1.7135592525958E+15')

DB Layer
Handle queries to configured DB and return results to PHP

DB abstraction team plz append more details here

Extension
Every custom extension should inherit from))TikiExtension((class
Can have install/uninstall procedures
Can be enabled/disabled
Can provide entries to dynamic menu
Can draw extension configuration page when required, load and save configuration data
Can draw 'module' (yes it is module box in nowdays Tiki) — it can be the only that extension do —
then))TikiExtensioncalledTikiModule((
Can provide API for other extensions
Can use API of other extensions (get another extensions instance before via core API)
'Core' Extensions — builtin extensions
[+]

Extension Examples
[+]

https://tiki.org/tiki-editpage.php?page=called
javascript:flipWithSign('id1.7135592526084E+15')

Architecture notes
Of couse OO used to implement all core services
Class TikiCore contain no valued code! It is just facade class (see design patterns) for core
components (like EM, OPM, DBL, ...) which is of couse classes too...

Design Notes
It is needed to specify core CSS styles and common layout to make Tiki interface in one styled
design. Common elements can be:

forms (dialogs)
tables with result records (with 'even'/'odd' TD styles now)
'modules' (boxes at left or right)
smth else?

WYSIWYCA — What You See Is What You Can Access — as defined by mose, and with what I fully
agree...

Nothing on screen should appear that user can't click (or if click got error)
To implement strict permissions checking needed everywhere

checking rights(TikiCoreWhisheslist) can be much easier

See also
TikiDesintegration — more ideas from gmuslera
UserPagezaufi — another bunch of ideas
BeastRiderIdeas — Content Management from an Elder's Perspective
TikiCorePrototype — random thoughts by zaufi on core
TikiInstallFeatureDev — a package installer/upgrader (gongo)
TikiPackager — a package creator (especially helpful for developers that want to make packages)
(gongo)
TikiPackageRemover — thoughts on how to remove installed packages later-on (gongo)

https://tiki.org/UserPagegmuslera

	Intro
	Tiki Core Components
	Extensions Management
	Objects and Permissions Management
	Integrated Debugging/Logging Facility
	Core Abstractions
	DB Layer
	Extension
	Extension Examples
	Architecture notes
	Design Notes
	See also

